
Modeling, Simulation and Analysis of
Integrated Building Energy and Control Systems

Michael Wetter
Simulation Research Group

Building Technologies Department
Energy and Environmental Technologies Division

Lawrence Berkeley National Laboratory

August 10, 2009

1

Overview
Introduction
 Trends - Problems - Needs

Mono-Simulation with Modelica

 Modelica Standard Library - LBNL Buildings Library - Applications

Co-Simulation with Building Controls Virtual Test Bed
 Analysis - Building Controls Virtual Test Bed - Applications

R&D Needs

2

Integration to Increase Efficiency

3

Office complex of the future.

energy efficiency – use of renewable energy – wellness at work

Decentralized dehumidification
with liquid desiccant

Micro-mirror to redirect
sunlight

Active facade for
natural ventilation

Phase change material to increase
thermal storage

Cyprus grass to
humidify supply air

Web-server at the size
of 25 cents

Innovation happens at the interface between disciplines.

Integrated systems require system-level analysis.

Computational Science and Engineering reduces cost and time,
but needs flexible tools
 - for rapid prototyping
 - to identify and fix mistakes early

New opportunities through C3:
Communication Computation Controls

Trends

4

Smoothness of Simulation Output
Small changes in input x should cause
small changes in output f(x).

Smooth results are required for
€

∂f x()
∂x i

≈
f (x + Δ ei) − f x()

Δ

5

controls feedback linearization
state linearization
optimal control

optimization nonlinear programming
pattern search methods

analysis sensitivity
robustness

numerical solvers Newton-based solvers
integration algorithm for stiff systems

x(λ) = xHJ + λ (xsGA − xHJ),
x ∈ #13

Numerical “Noise” in EnergyPlus

Source: Wetter and Wright, 2004

Discontinuities are caused by nested solvers with low precision.
(20+ nested solvers spread over 500,000 lines of code.)

6

Numerical “Noise” in EnergyPlus

Source: Wetter and Wright, 2004

Automated analysis is not necessarily robust with existing simulation programs.

Do we need to rethink how we develop simulation programs?
7

Needs
Feedback control of states (temperature, pressure) not heating/cooling load
Code generation for control hardware
Freely programmable control sequences

- graphical block diagrams
- textual algorithms
- hierarchies to manage complexity and encapsulate functional blocks

Different models of computations
- continuous time
- discrete time
- finite state machine

Application programming interfaces (API) to tools used by controls engineers
Analysis capabilities

- linearization
- state initialization
- applicable for optimal control algorithms

Controls Oriented Modeling

8

New situation
Hardware becomes parallel, CPU speed
stagnates.
Floating point operation is cheap, memory
access is expensive.

EnergyPlus
Rewrite 500,000 lines of code?

- race conditions
- memory management...
Very expensive proposition.
No formal verification possible.

Equation-based languages
Write analyzable code.
Use language constructs to map subsystem
models to processors.
Change code generators to map strongly
coupled equation systems to processors.

Parallel Computing

The Landscape of Parallel Computing Research: A View From Berkeley

6

8. Old CW: We can reveal more instruction-level parallelism (ILP) via compilers

and architecture innovation. Examples from the past include branch prediction,

out-of-order execution, speculation, and Very Long Instruction Word systems.

• New CW is the “ILP wall”: There are diminishing returns on finding more ILP.

[Hennessy and Patterson 2007]

9. Old CW: Uniprocessor performance doubles every 18 months.

• New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall. Figure 2 plots

processor performance for almost 30 years. In 2006, performance is a factor of

three below the traditional doubling every 18 months that we enjoyed between

1986 and 2002. The doubling of uniprocessor performance may now take 5 years.

10. Old CW: Don’t bother parallelizing your application, as you can just wait a little

while and run it on a much faster sequential computer.

• New CW: It will be a very long wait for a faster sequential computer (see above).

11. Old CW: Increasing clock frequency is the primary method of improving

processor performance.

• New CW: Increasing parallelism is the primary method of improving processor

performance. (See Section 4.1.)

12. Old CW: Less than linear scaling for a multiprocessor application is failure.

• New CW: Given the switch to parallel computing, any speedup via parallelism is a

success.

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

Figure 2. Processor performance improvement between 1978 and 2006 using integer SPEC [SPEC 2006]

programs. RISCs helped inspire performance to improve by 52% per year between 1986 and 2002, which

was much faster than the VAX minicomputer improved between 1978 and 1986. Since 2002, performance

has improved less than 20% per year. By 2006, processors will be a factor of three slower than if progress

had continued at 52% per year. This figure is Figure 1.1 in [Hennessy and Patterson 2007].

Although the CW pairs above paint a negative picture about the state of hardware, there

are compensating positives as well. First, Moore’s Law continues, so we will soon be

able to put thousands of simple processors on a single, economical chip (see Section

Source: Asanovic et al., 2006

Processor speed

Floating point operations

Source: Zuo and Chen, 2009
9

Modeling of Physical Systems

Procedural modeling ≈ 1970

Block diagram modeling ≈ 1990

Equation-based, object-oriented modeling ≈ 2000

Higher-level of abstraction to
- increase productivity
- facilitate model-reuse
- preserve system topology
- enable analysis
- generate code for target
 hardware

10

Separation of Concerns

Describes the phenomena
Standardized interfaces
Acausal models
Across & through variables
Hierarchical modeling
Class inheritance

Solves the equations
Partitioning
Tearing
Inline integration
Adaptive solver

 - Integration
 - Nonlinear equations

Modeling Compilation & Simulation

Figure adapted from
 Cellier and Kofman (2006)

11

Model Development Time

12

Problems

Building simulation programs are not designed for multi-disciplinary
analysis
Controls has wrong semantics
Many modern building systems cannot be analyzed
Adding models takes months
Tools were not developed for
− automated analysis
− innovative systems

Sharing models & data is hard
Limited educational benefits due to black-box models and outdated
technologies
Heavy reliance on expensive and slow full scale experiments

13

Overview
Introduction
 Trends - Problems - Needs

Mono-Simulation with Modelica

 Modelica Standard Library - LBNL Buildings Library - Applications

Co-Simulation with Building Controls Virtual Test Bed
 Analysis - Building Controls Virtual Test Bed - Applications

R&D Needs

14

Modelica Buildings Library

15

Enable
Rapid prototyping of innovative systems
Controls design
Model-based operation

Available from
http://simulationresearch.lbl.gov/modelica

http://simulationresearch.lbl.gov/modelica
http://simulationresearch.lbl.gov/modelica

Object-oriented equation-based language
Icons with standardized interfaces encapsulate differential,
algebraic and discrete equations

Developed since 1996 because conventional approach for
modeling was inadequate for integrated engineered systems
Well positioned to become de-facto open standard for
modeling multi-engineering systems
− ITEA2: 285 person years investment over next three years.

What is Modelica

standardized modeling
language & graphical
representation

C code

solver
executable

16C*der(T)=Q_flow

Modelica Standard Library. 1300 models & functions.

Analog Digital Machines Translational

Rotational MultiBody Media HeatTransfer

Blocks StateGraph FluidMath

17

LBNL Buildings Library. 100 models and functions.

Provides HVAC specific models based on Modelica.Fluids library

18

Usage Levels
Model user

Model developer

Library developer

Drags & drops component models to form system model

Reuses base models to implement new models

 Q_flow = Q0_flow * u;
 mXi_flow = zeros(Medium.nXi);

Develops base models for characteristic components

 port_a.m_flow*port_b.h_outflow +
 port_b.m_flow*inStream(port_a.h_outflow) = Q_flow;
 port_a.m_flow + port_b.m_flow = -sum(mXi_flow);

19

Applications
1) Rapid prototyping

Analyzed novel hydronic heating system with
radiator pumps and hierarchical system
controls.

2) Supervisory controls
Simulated & auto-tuned “trim and response”
sequence for variable air volume flow systems.

3) Local loop controls
Reused high-order model for controls design in
frequency domain.

20

Rapid Prototyping: Wilo GENIAX (Introduction 2009)

Original system model
2400 components
13,200 equations

After symbolic manipulations
300 state variables
8,700 equations

21

Rapid Prototyping: Wilo GENIAX (Introduction 2009)

22

Rapid Prototyping: Wilo GENIAX (Introduction 2009)

23

Rapid Prototyping: Wilo GENIAX (Introduction 2009)

24

Rapid Prototyping: Wilo GENIAX (Introduction 2009)

Thermostatic radiator valves Radiator pumps

25

Reproduced trends published by Wilo.

Developed boiler model, radiator model, simple room model and both
system models in one week.

Applications – VAV System Controls

19

VAV System
(ASHRAE 825-RP)

Trim & response control for fan
static pressure reset
(Taylor, 2007)

1926

Original system model
730 components
4,420 equations
40 state variables

Applications – VAV System Controls
Stabilized control and reduced energy by solving optimization problem with state constraints

min
x∈X

{f(x) | g(x) = 0},

f(x) =
1

E0

∫ T

0
Pf (x, t) dt,

g(x) =
1
T

∫ T

0

(
max{0, (yj(x, t)/x̂s)−

1/(2 Kp)− 1 | j ∈ J(x, t)}
)2

dt 27

Applications – Feedback Loop Stability
Heat exchanger feedback control
2632 equations
40 states
37x37 (linear) + 6x6 (nonlinear) 0 (linear) + 2x2 (nonlinear)

28

u(t) = K(y) e(t)

˙̃x(t) = Ã x̃(t) + B̃ ũ(t)
x̃(t) ∈ "3

ẋ(t) = A x(t) + B u(t)
x(t) ∈ "40

Applications – Feedback Loop Stability

29

Overview
Introduction
 Trends - Problems - Needs

Mono-Simulation with Modelica

 Modelica Standard Library - LBNL Buildings Library - Applications

Co-Simulation with Building Controls Virtual Test Bed
 Analysis - Building Controls Virtual Test Bed - Applications

R&D Needs

30

Building Controls Virtual Test Bed (BCVTB)

31

Enable
Co-simulation for integrated multi-

disciplinary analysis
Use of domain-specific tools
Model-based system-level design
Model-based operation

Available from
http://simulationresearch.lbl.gov/bcvtb

Based on Ptolemy II from UC Berkeley,
which will include BCVTB interface.

http://simulationresearch.lbl.gov/bcvtb
http://simulationresearch.lbl.gov/bcvtb

Functional Domains & Coupled Tools

HVAC & controls
Modelica

airflow
Fluent

wireless networks
Ptolemy II

lighting
Radiance

building energy
EnergyPlus

Middle-ware that exchanges and synchronizes data as (simulation-)time progresses

real-time data
www+xml

controls
Simulink

controls & data analysis
MATLAB

building energy
TRNSYS

implemented
funded
in proposal
in discussion

hardware in
the loop

building automation
BACnet

building energy
ESP-r

BCVTB

y(k + 1) = max(0,min(1, Kp (Tset − T (k))))

T (k + 1) = T (k) +
∆t

C

(
UA (Tout − T (k)) + Q̇0 y(k)

)

Simple Example: Room Heater

Controller: Discrete time proportional controller

Plant: Room model

33

Controller PlantSet point
+

-

Simple Example: Room Heater

Discrete Time Proportional Controller

Implementation in Simulink

y(k + 1) = max(0,min(1, Kp (Tset − T (k))))

y(k + 1) T (k)

34

Simple Example: Room Heater

Room model

Implementation in Modelica

T (k + 1) = T (k) +
∆t

C

(
UA (Tout − T (k)) + Q̇0 y(k)

)

y(k)T (k + 1)

35

T (k + 1)

Simple Example: Room Heater

T (k) y(k)y(k + 1)

36

BCVTB Architecture

Dymola

BCVTB

process invocation

configuration

Simulink

BCVTB
C libraryActor

BSD Socket
Client

BCVTB
C library

BSD Socket
Client

BSD Socket
Server

Actor

BSD Socket
Server

process invocation

configuration

TCP/IP TCP/IP

37

Co-Simulation Analysis

1) Does numerical solution of co-simulation converge to
solution of differential equation?

2) How does exchanged data affect stability?

3) Is strong coupling or loose coupling more efficient?
2.

38

Does numerical solution of co-simulation converge to
solution of differential equation?

Consistency + stability = convergence

Consistency
a) Definition: Local Truncation Error, LTE = error produced in
one integration step (starting from exact solution)

b) Definition: Unit Local Truncation Error,

c) Theorem:

Stability
d) Theorem: Co-simulation is (conditionally) stable.

ULTE(∆t) =
LTE(∆t)

∆t

Co-Simulation Analysis

Details: See Trcka, Hensen, Wetter 2009

‖ULTEp(∆t)‖ ≤ ‖ULTE(∆t)‖+ α L∆t

39

T1 T2

Ḣ1

Ḣ2

C1

T1(tn+1)− T1(tn) ∝
∫ tn+1

tn (Ḣ2(s)− Ḣ1(s)) ds

C1

Co-Simulation Analysis

How does exchanged data affect stability?

Couple to states with large capacity.

Instability typically happens after setpoint changes.
40

Co-Simulation Analysis

Is strong coupling or loose coupling more efficient?
!

!

"
#$
%
&'
!#
(
)
*!
#$
+

m!

m!

1 1
,T C

2 2
,T C

T
!

T
!

1
K

2
K

!
!

"
#$
%
&'
!#
(
)
*!
#$
+

m!

m!

1 1
,T C

2 2
,T C

T
!

T
!

1
K

2
K

Text

Strong coupling

Requires iteration across simulators.
Requires rewinding states.

Loose coupling

No iteration across simulators.
Requires smaller time steps.

time step [s]

computing time [s]

0 5 10 15 20 25 30

7

5

13

30

Details: See Trcka, Wetter, Hensen 2007

Strong coupling
Loose coupling

41

Ex: Controls in Simulink, Building in EnergyPlus

42

De

43

Demonstration

Reusable modules for model-based operation

Hybrid systems,
emulate actual
feedback control

Discrete time,
idealized controls

Tool selection depends on required
- model resolution

- emulation of actual control & operation
- dynamics of equipment

- analysis capabilities
- smoothness
- state initialization

44

www/xml

Overview
Introduction
 Trends - Problems - Needs

Mono-Simulation with Modelica

 Modelica Standard Library - LBNL Buildings Library - Applications

Co-Simulation with Building Controls Virtual Test Bed
 Analysis - Building Controls Virtual Test Bed - Applications

R&D Needs

45

R&D Needs
Integration across disciplines

Equation-based object-oriented modeling

Co-simulation

Optimization

- adaptive step size
- semantics of exchanged data
- standardized data exchange
- distributed computing

- model-based, system-level
 design processes
- design for robustness

- standardized libraries
- computationally efficient
 and robust model
 formulation
- code generation for
 controls

Equation-based object-oriented simulation

- multi-rate solvers
- mapping equations to
 parallel hardware

- integration with design tools
- parallel algorithms
 (with cloud computing)
- stochastic optimization 46

Downloads and further information:
http://simulationresearch.lbl.gov/wetter

